节点文献
二阶泛函微分ф-Laplace方程Neumann边值问题
Second order Neumann boundary value problems of functional differential ф-Laplace equations
【摘要】 利用上下解和单调迭代法,研究了带Neumann边界条件的二阶泛函微分-Laplace方程在上下解反序条件下解的存在性条件.解在区间[β,α]上的存在性由反极大值原理给出,这样的比较原理是基本的,确保了可以利用单调迭代法来证明极值解的存在性.
【Abstract】 This paper deals with the existence conditions to second order functional differential -Laplace equation with Neumann boundary value conditions by the method of upper and lower solutions and monotone iterative technique.Moreover,it obtains the existence conditions with upper and lower solutions in the reverse order.The existence of solutions in is given via anti-maximum principles.Such comparison principles are fundamental and ensure both the existence and the approximation of extremal solutions of problems via the monotone method.
【关键词】 Neumann边值问题;
上下解;
反极大值比较原理;
单调迭代法;
【Key words】 Neumann boundary value problem; upper and lower solutions; anti-maximum comparison principle; monotone iterative technique;
【Key words】 Neumann boundary value problem; upper and lower solutions; anti-maximum comparison principle; monotone iterative technique;
【基金】 国家自然科学基金资助项目(10571021)
- 【文献出处】 东北师大学报(自然科学版) ,Journal of Northeast Normal University , 编辑部邮箱 ,2006年04期
- 【分类号】O175.8
- 【下载频次】62