节点文献

基于TM数据的植被覆盖度反演

Vegetation fraction estimation based on TM data

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 丁艳梅张继贤王坚刘正军

【Author】 DING Yanmei~ ①,② ,ZHANG Jixian~ ① , WANG Jian~ ① , LIU Zhengjun~ ① (①Chinese Academy of Surveying and Mapping ,Beijing 100039, China;②Geoinformation Science & Engineering College , Shandong University of Science and Technology , Qingdao 266510,China)

【机构】 中国测绘科学研究院中国测绘科学研究院 北京100039山东科技大学地球信息科学与工程学院山东青岛266510北京100039

【摘要】 本文首先对TM影像进行了几何纠正、辐射校正、大气校正;然后根据混合像元的结构特征,利用TM数据从植被指数(NDVI)中采用“等密度模型”和“非密度模型”提取了宜昌南部地区的植被覆盖度。在用“非密度模型”反演植被覆盖度的过程中,叶面积指数(LAI)是一个必要的参数,本文提出了一种改进的借助可见光波段和近红外波段反射值来提取叶面积指数(LAI)的方法。通过和MODIS数据反演结果比较表明:“非密度模型”的估算精度要高于“等密度模型”;利用“等密度模型”和“非密度模型”反演植被覆盖度是可行。

【Abstract】 In the paper,Geometric、radiometric and atmospheric correction of the images are performed firstly.secondly,According to the sub-pixel structure characteristic, the potential of deriving vegetation fraction from normalized difference vegetation index using the TM data and resorting to“Dense Vegetation Model”and “Nondense Vegetation Model”, is studied in an area in the south of Yichang. During the process of deriving percent vegetation cover using “Nondense Vegetation Model”, Leaf Area Index (LAI) is a necessary parameters, an improved method for deriving LAI from visible and near infrared measurements above a soil background is proposed. We acquire the vegetation fraction of the study area with MODIS data, then compare it to that derivred from TM data, we can detect that the accuracy rate of vegetation fraction using “Nondense Vegetation Model”is higher than that from “Dense Vegetation Model”; the comparision also suggests that the method of using “Dense Vegetation Model”and “Nondense Vegetation Model”to achieve Vegetation fraction is feasible.

【基金】 科技部科研院所社会公益研究专项(2003DIA6N015)
  • 【文献出处】 测绘科学 ,Science of Surveying and Mapping , 编辑部邮箱 ,2006年01期
  • 【分类号】TP79
  • 【被引频次】133
  • 【下载频次】2582
节点文献中: 

本文链接的文献网络图示:

本文的引文网络