节点文献

基于纳米ZnO气体传感器阵列的乙醇、丙酮、苯、甲苯、二甲苯的识别研究

Recognition of Ethanol, Acetone, Benzene, Toluene and Xylene Using Nano ZnO Gas Sensor Array

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张覃轶谢长生李登峰张顺平柏自奎

【Author】 ZHANG Qin-yi 1,2 ,XIE Chang-sheng1,LI Deng-feng1,ZHANG Shun-ping1,BAI Zi-kui1 1.Dept . of Material Sci. and Eng. , Huazhong University of Science and Technology ,Wuhan 430074, China; 2.Dept . of Material Sci. and Eng. , Wuhan University of Technology ,Wuhan 430070, China

【机构】 华中科技大学材料科学与工程学院武汉理工大学材料科学与工程学院 武汉430070武汉430074

【摘要】 采用6个不同掺杂的纳米ZnO气体传感器组成的阵列实现了乙醇、丙酮、苯、甲苯、二甲苯的识别。研究表明,掺杂可大幅度提高传感器的敏感度和对可挥发有机物(VOCs)的选择性。对比了k近邻法、线性判别法、反传人工神经网络、概率神经网络、学习向量量化等在本实验中的应用。反传人工神经网络具有最高识别率,可达100%。本研究表明电子鼻在空气质量监测中具有广阔的应用前景。

【Abstract】 Recognition of ethanol, acetone, benzene, toluene and xylene was performed by using 6 doped nano ZnO gas sensors. It was proved that sensitivities and selectivity of gas sensors could be reasonably improved by dopants. K-nearest neighbour (k-NN), linear discriminant analysis (LDA), back-propagation artificial neural network (BP-ANN), probabilistic neural network (PNN) and learning vector quantization (LVQ) were compared for their suitability on classifying volatile organic compounds (VOCs). The accuracy of BP-ANN in terms of predicting tested samples was 100% and the highest among the pattern recognition algorithms. This work shows the potential application of the gas sensor arrays for monitoring the air quality.

  • 【文献出处】 传感技术学报 ,Chinese Journal of Sensors and Actuators , 编辑部邮箱 ,2006年03期
  • 【分类号】TP212.9
  • 【被引频次】42
  • 【下载频次】1008
节点文献中: 

本文链接的文献网络图示:

本文的引文网络