节点文献

Mie-Grüneisen状态方程可压缩多流体流动的PPM方法

Piecewise parabolic method for compressible multi-fluid flow with Mie-Grüneisen equation of state

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 郑建国马东军孙德军尹协远

【Author】 ZHENG Jian-guo,MA Dong-jun~(),SUN De-jun,YIN Xie-yuan(School of Engineering Science,University of Science and Technology of China,Hefei230027,Anhui,China)

【机构】 中国科学技术大学工程科学学院中国科学技术大学工程科学学院 安徽合肥230027安徽合肥230027

【摘要】 采用流体体积分数的混合型多流体数值模型,将piecewise parabolic method(PPM)方法应用于可压缩多流体流动的数值模拟,拓展了以前提出的模型和数值方法,使它能够处理一般的Mie-Grüneisen状态方程。采用双波近似和两层迭代算法求解一般状态方程的Riemann问题;并根据多流体接触界面无振荡原则设计高精度计算格式,对典型的纯界面平移问题可以从理论上证明本算法在接触间断附近压力和速度没有振荡,而且数值模拟结果表明界面数值耗散也被控制在2~3个网格之内。模拟了多种复杂的可压缩多流体流动,算例结果表明本文方法可以有效地处理接触间断、激波等物理问题,且具有耗散小精度高的特点。

【Abstract】 A compressible fluid-mixture model based on the volume fraction is introduced and a high-order piecewise parabolic method(PPM) is employed to solve the multi-fluid flow which are characterized by the Mie-Grüneisen equation of state.The double shock approximation and two level iteration algorithm are used to solve the Riemann problem for general equation of state.A new high resolution scheme is proposed for the mixed type multi-fluid model,which satisfies the principle of oscillation-free for pressure and velocity near the interface between different fluids.For a pure interface problem,the proposed scheme is oscillation-free,and the numerical results also validate that there is no any spurious oscillation in the pressure as well as in velocity profiles on the contact discontinuity while numerical diffusion is limited in two or three cell grids,which is much better than state of the art algorithms.Some numerical experiments and comparisons are presented,and the numerical results show that the new method can simulate the complicated compressible multi-fluid problem such as high pressure ratio Riemann problem,shock-interface interaction and so on.

【基金】 国家自然科学基金委员会与中国工程物理研究院联合基金项目(10376035);中国博士后科学基金项目(2004036160)
  • 【文献出处】 爆炸与冲击 ,Explosion and Shock Waves , 编辑部邮箱 ,2006年02期
  • 【分类号】O381;O354
  • 【被引频次】9
  • 【下载频次】251
节点文献中: 

本文链接的文献网络图示:

本文的引文网络