节点文献
新型RBF神经网络及在热工过程建模中的应用
A NOVEL RBF NEURAL NETWORK AND ITS APPLICATION IN THERMAL PROCESSES MODELLING
【摘要】 文中提出了一种基于免疫原理的新型径向基函数(RBF—Radial Basis Function)神经网络模型。该模型利用人工免疫系统的记忆、学习和自组织调节原理,进行RBF神经网络隐层中心数量和位置的选择,并采用递推最小二乘算法确定网络输出层的权值。将这种新型的RBF神经网络应用于建立热工过程的非线性模型。仿真研究表明,这种建模方法不仅计算量较小,而且精度高,并有较好的泛化能力。
【Abstract】 A novel RBF neural network model based on immune principles is presented in this paper. The memory, learning and self-organization abilities of artificial immune system are introduced to the selecting of the number and positions of hidden layer RBF centers, the output layer weights are decided with the recursive least squares algorithm. The nonlinear model of thermal processes is estabilished with the novel RBF neural network, simulation study proves that the method has less calculation, high precision and good generalization ability.
【Key words】 radial basis function; neural network; artificial immune system; hybrid learning algorithm; thermal processes; modelling;
- 【文献出处】 中国电机工程学报 ,Proceedings of the Csee , 编辑部邮箱 ,2002年09期
- 【分类号】TP183;TP15
- 【被引频次】118
- 【下载频次】561