节点文献

基于MDL原理与混合遗传算法的Bayesian网络结构学习

Learning Bayesian Network Structures Based on MDL and Hybrid Genetic Algorithms

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 彭青松张佑生汪荣贵钱隆骆祥峰

【Author】 PENG Qing-song, ZHANG You-sheng, WANG Rong-gui, QIANLong, LUO Xiang-feng(Hefei University of Technology Hefei 230009)

【机构】 合肥工业大学合肥工业大学 合肥 230009合肥 230009合肥 230009

【摘要】 从大型数据库中学习Bayesian网络结构是Bayesian网络应用的难点之一。在分析标准遗传算法与爬山算法各自优点与不足的基础上,将这两种算法相结合,以最小描述长度为评价函数,得到一种混合遗传算法,实现了它们的优势互补。文章给出了混合遗传算法的计算步骤,并通过对ALARM数据库学习得到的Bayesian网络结构。

【Abstract】 One of the difficulties of the application of Bayesian Networks is that when the data arise, it is very hard to learn the structures of Bayesian Networks from large databases. Both Standard Genetic Algorithms and Hill-Climbing can be used in structure learning, but none of them can get proper result easily. The combination of the two algorithms can have better effect. The ALARM Network is learned, Hybrid Genetic Algorithms is usedthen Bayesian Network structure is got as the result after the Minimum Description Length is selected as the fitness function.

  • 【文献出处】 微电子学与计算机 ,Microelectronics & Computer , 编辑部邮箱 ,2002年07期
  • 【分类号】TP277
  • 【被引频次】9
  • 【下载频次】237
节点文献中: 

本文链接的文献网络图示:

本文的引文网络