节点文献
分组样本下先验BN模型及条件概率的学习算法
Prior BN Model for Group Samples and Conditional Probabilities Learning Algorithm
【摘要】 文章扩展经典的先验BN模型,采用两层学习结构讨论分组样本下BN模型的条件概率及学习算法:一层是对各组私有条件概率分布的学习;另一层是对各组公有条件概率分布的学习。算法在综合公有后验条件概率分布和本组学习实例数据分布特征的基础上,实现对各组私有条件概率分布的学习,并可通过经验或学习来改变综合值中共性和个性的比例。
【Abstract】 This paper has extended classical prior BN model and discussed BN conditional probabilities &its learning algorithm for group samples with two level learning structure:one level expresses learning private conditional probabilities for each group;another level expresses learning public conditional probability. On the basis of synthesizing public posterior conditional probability distribution and the group learning instance data,the learning private condition probability distribution can be implemented. The proportion of the specific character to the general can be changed by experience or learning.
【Key words】 Bayesian networks model; Group sample; Public conditional probability; Private conditional probability; Prior distribution; Posterior distribution;
- 【文献出处】 微电子学与计算机 ,Microelectronics & Computer , 编辑部邮箱 ,2002年05期
- 【分类号】TP181
- 【被引频次】2
- 【下载频次】60