节点文献
应用反向传播神经网络预测化合物脑血分配系数
Predication of Brain blood Partitioning Using Back Propagation Network
【摘要】 选用27种三维结构性质描述符对脑血分配系数预测建立神经网络模型.网络模型选用典型的适合函数逼近的两层结构神经网络对脑血分配系数(lgBB,BB为脑血浓度比)进行预测,计算中采用的模型具有一个双曲正切型激活函数的隐含层和一个线性激活函数的输出层.计算表明,使用小心选择的反向传播神经网络模型对化合物脑血分配系数具有较好的预测能力.
【Abstract】 The back propagation network based predication of brain blood concentration ratio (BB) using 27 structurally derived descriptors was investigated.A typical biased two layer network,including a sigmoid layer and a linear output layer,suited for arbitrary function approximation was chosen for the predication.The results show that fine tuned back propagation network models are very efficient for predication use.
【关键词】 脑血屏障;
QSPR(定量结构性质分析);
分配系数;
反向传播;
神经网络;
【Key words】 Brain blood barrier; QSPR (Quantitative Structure Property Analysis); Partition coefficients; Back propagation; Neural Network;
【Key words】 Brain blood barrier; QSPR (Quantitative Structure Property Analysis); Partition coefficients; Back propagation; Neural Network;
【基金】 国家自然科学基金重大项目(29992590-2)资助
- 【文献出处】 物理化学学报 ,Acta Physico-chimica Sinica , 编辑部邮箱 ,2002年05期
- 【分类号】R917
- 【下载频次】77