节点文献

基于RBF网络的混沌动力系统辨识

Identification of Chaotic Dynamical Systems Based on RBF Neural Networks

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李冬梅王正欧

【Author】 LI Dong mei, WANG Zheng ou (Institute of systems Engineering,Tianjin University,Tianjin 300072,China)

【机构】 天津大学系统工程研究所天津大学系统工程研究所 天津300072天津300072

【摘要】 提出用 RBF神经网络对混沌动力系统进行辨识 ,设计了一个三层 RBF网络结构 ,仿真实验说明了 RBF网络用于学习混沌动力系统时的基本性质 .用辨识模型重建吸引子方法定性地评价辨识模型 ,通过计算辨识模型的 L yapunov指数定量地评价辨识模型的性能 ,同时推导了 RBF网络模型 L yapunov指数的计算公式 .仿真结果表明 ,该辨识模型能很好地逼近原混沌动力系统 ,准确地体现原混沌系统的动力学特性

【Abstract】 Chaotic dynamical systems can be identified by RBF neural networks.A three layer RBF network structure was designed and the fundamental properties of the RBF networks were clarified to learn chaotic dynamical systems through some numerical experiments.A qualitative evaluation of the identified models was made with the reconstruction of an attractor by the identified models,and a quantitative evaluation of the identified models was made with calculation of the Lyapunov exponents of the identified models,too.The formula of the Lyapunov exponents of RBF networks models is derived.Simulations show that the identified models can approach the original chaotic dynamical systems and extract the dynamical characteristics of the original chaotic systems.

  • 【文献出处】 天津大学学报 ,Journal of Tianjin University , 编辑部邮箱 ,2002年02期
  • 【分类号】TP183
  • 【被引频次】8
  • 【下载频次】111
节点文献中: 

本文链接的文献网络图示:

本文的引文网络