节点文献
一种非线性奇异积分方程的解法
ON THE SOLUTION OF A KIND OF NONLINEAR SINGULAR INTEGRAL EQUATION
【摘要】 对非线性奇异积分方程其中L为一封闭光滑曲线;a,b,c为常数,在H(?)lder连续函数空间中求解时将其化为一个带根号的Riemann边值问题而得出其一般解.本文得知;一般说来,它具有非平凡解.其解的表达式以及可解条件均已得出.
【Abstract】 The nonlinear singular integral equationwhere a, b, c are constants and L is a smooth closed contour, is solved in Holder continuousspace by transforming it to a Riemann boundary value problem with square roots. It is found that, in general, it has other solutions besides the trivial constant ones. The expression of such solutions as well as the conditions of its solvability is obtained.
【关键词】 非线性奇异积分方程;
带根号的Riemann边值问题;
Plemelj公式;
【Key words】 Nonlinear singular integral equation; Riemann boundary value problem with square roots; Plemelj formula;
【Key words】 Nonlinear singular integral equation; Riemann boundary value problem with square roots; Plemelj formula;
【基金】 国家自然科学基金(No.19871064)资助的项目.
- 【文献出处】 数学年刊A辑(中文版) ,Chinese Annals of Mathematics,series A , 编辑部邮箱 ,2002年05期
- 【分类号】O175.5
- 【被引频次】18
- 【下载频次】159