节点文献
粘弹性椭圆板的非线性动力响应
Nonlinear Dynamic Response of Viscoelastic Elliptical Plate
【摘要】 基于VonKarman理论,建立了弹性椭圆板的非线性动力微分方程.引入了Kelvin-Voigt粘弹性本构关系后,得到用中面位移表述的非线性粘弹性运动控制方程组.然后应用Galerkin技术和KBM法求解了此微分方程,并讨论了有关参数对粘弹性椭圆板动力学行为的影响.
【Abstract】 Based on the Von Karman theory of thin plate with large deflection, the nonlinear dynamic differential equations of elastic elliptical plate are first established. The nonlinear viscoelastic governing equations in terms of middle plane displacement are obtained by introducing the KelvinVoigt viscoelastic constitutive relationship. Then, the differential equations are solved by using Galerkin and KBM method. Finally, the influences of the parameters on the dynamical behavior of viscoelastic elliptical plate are investigated.
【关键词】 椭圆板;
粘弹性;
非线性;
动力响应;
【Key words】 elliptical plate; viscoelasticity; nonlinearity; dynamic response;
【Key words】 elliptical plate; viscoelasticity; nonlinearity; dynamic response;
- 【文献出处】 湖南大学学报(自然科学版) ,Journal of Hunan University(Naturnal Science) , 编辑部邮箱 ,2002年06期
- 【分类号】O326
- 【下载频次】60