节点文献

一种用于神经网络样本划分的自聚类算法

SELF-CLUSTERING ALGORITHM FOR PARTITIONING ANN SAMPLES

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 周祥何小荣陈丙珍

【Author】 ZHOU Xiang,HE Xiaorong and CHEN Bingzhen (Department of Chemical Engineering,Tsinghua University,Beijing 100084,China)

【机构】 清华大学化学工程系清华大学化学工程系 北京100084北京100084北京100084

【摘要】 建立神经网络模型时 ,能否合理地划分训练样本和检验样本直接关系到建模的效率 .在很多实际应用中 ,检验样本是随机抽取的 .本文提出了一种基于欧氏距离的自聚类算法 ,根据样本的空间分布情况对其自动分类 ,然后确定检验样本 .算例研究表明 ,应用此算法能够改善检验效果 ,从而提高建模效率 .

【Abstract】 In the modeling process of Artificial Neural Network (ANN),an appropriate partition of train samples and test samples conduces to a high modeling efficiency.In most cases,test samples are selected randomly.In this paper,a Euclidian distance based self-clustering algorithm is proposed to partition train samples and test samples automatically.All the samples are attributed to different clusters firstly; each individual sample is affiliated to the nearest cluster according to the Euclidian distance from the kernels of other clusters whereafter; and then small clusters are divided up into others;at last test samples are selected from each cluster in the same proportion.Two case studies show that this algorithm leads to a better test result in comparison with the random method,and therefore increases the modeling efficiency.

【关键词】 人工神经网络聚类动态聚类算法
【Key words】 ANNclusterdynamic clustering algorithm
  • 【文献出处】 化工学报 ,Journal of Chemical Industry and Engineering(China) , 编辑部邮箱 ,2002年09期
  • 【分类号】TQ018
  • 【被引频次】9
  • 【下载频次】178
节点文献中: 

本文链接的文献网络图示:

本文的引文网络