节点文献
基于模糊集理论的医学CR图像增强
Processing method of CR image based on fuzzy set theory
【摘要】 数字化X光影像可以划分为目标区和背景区两部分 ,进行医疗诊断的信息主要集中在目标区 ,因此在图像进行处理时应合理地区分两部分并采用不同的方法进行处理。本文引入模糊集的概念来描述目标区和背景区 ,并测定了隶属度函数 ,建立了基于模糊集理论的图像处理模型 ,给出了具体实现方法。处理后的图像增强了目标区图象的视觉效果 ,使医学信息得到了更好的表达 ,进而提高诊断的准确性。
【Abstract】 The digital CR image can be divided into object region and background region,and useful information about diagnosis is in the former one. In image processing, the two regions should be treated with different ways. In this paper,a fuzzy set is used to describe the two regions, and the membership degree function is established by fuzzy statistics. The image processing model based on the fussy set theory is constructed and the processing method is given in detail. Experimental results show that the proposed methods are both effective and feasible. In the processed images, medical information is impressed clearly, thus improving the diagnosis accuracy.
【Key words】 image enhancement; fuzzy sets; membership degree functions; CR images;
- 【文献出处】 光学精密工程 ,Optics and Precision Engineering , 编辑部邮箱 ,2002年01期
- 【分类号】TH774
- 【被引频次】19
- 【下载频次】177