节点文献
REACTION MECHANISM OF BENZOPHENONE -PHOTOINITIATED CROSSLINKING OF POLYETHYLENE
【摘要】 <正> The radical intermediates, the crosslink microstructures, and the reaction mechanism of benzophenone (BP)-photoinitiated crosslinking of low-density polyethylene (LDPE) and model compounds (MD) have been reviewed in detail.The spin-trapping electron spin resonance (ESR) spectra obtained from the LDPE/BP systems with spin-trap agents showthat two kinds of polymer radical intermediates are mainly formed: tertiary carbon and secondary carbon radicals. The spin-trapping ESR studies of MD/BP systems give further evidence that photocrosslinking reactions of PE predominantly takeplace at sites of tertiary carbon, secondary carbon, and especially allylic carbon when available. The high resolution 13C-NMR spectra obtained from LDPE and MD systems show that the crosslink microstructures have H- and Y-type links andthat their concentrations are of the same order. The fluorescence, ESR 13C and 1H-NMR spectra from the PE and MDsystems demonstrate that the main photoreduction product of BP(PPB) is benzpinacol formed by the recombination of twodiphenylhydroxymethyl (K·) radical intermediates. Two new PPB products: an isomer of benzpinacol with quinoid structure,1-phenylhydroxymethylene-4-diphenylhydroxymethyl-2, 5-cyclohexadiene and three kinds of α-alkyl-benzhydrols have beendetected and identified. These results provide new experimental evidence for elucidating the reaction mechanism in the BP-photoinitiated crosslinking of polyethylene.
【Abstract】 The radical intermediates, the crosslink microstructures, and the reaction mechanism of benzophenone (BP)-photoinitiated crosslinking of low-density polyethylene (LDPE) and model compounds (MD) have been reviewed in detail.The spin-trapping electron spin resonance (ESR) spectra obtained from the LDPE/BP systems with spin-trap agents showthat two kinds of polymer radical intermediates are mainly formed: tertiary carbon and secondary carbon radicals. The spin-trapping ESR studies of MD/BP systems give further evidence that photocrosslinking reactions of PE predominantly takeplace at sites of tertiary carbon, secondary carbon, and especially allylic carbon when available. The high resolution 13C-NMR spectra obtained from LDPE and MD systems show that the crosslink microstructures have H- and Y-type links andthat their concentrations are of the same order. The fluorescence, ESR 13C and 1H-NMR spectra from the PE and MDsystems demonstrate that the main photoreduction product of BP(PPB) is benzpinacol formed by the recombination of twodiphenylhydroxymethyl (K·) radical intermediates. Two new PPB products: an isomer of benzpinacol with quinoid structure,1-phenylhydroxymethylene-4-diphenylhydroxymethyl-2, 5-cyclohexadiene and three kinds of α-alkyl-benzhydrols have beendetected and identified. These results provide new experimental evidence for elucidating the reaction mechanism in the BP-photoinitiated crosslinking of polyethylene.
【Key words】 Photocrosslinking mechanism; Polymer radical intermediates; Crosslink microstructures, Photolytic products of benzophenone; Polyethylene; Model compound;
- 【文献出处】 Chinese Journal of Polymer Science ,高分子科学(英文版) , 编辑部邮箱 ,2002年04期
- 【分类号】TQ325.12
- 【被引频次】1
- 【下载频次】28