节点文献
遗传算法在近红外无创伤人体血糖浓度测量基础研究中的应用
Application of Genetic Algorithms in Fundamental Study of Non-invasive Measurement of Human Blood Glucose Concentration with Near Infrared Spectroscopy
【摘要】 遗传算法 (GA)应用在偏最小二乘法 (PLS)校正模型的波长优化选择中具有显著的效果。将遗传算法作为模块循环运行 ,能更快达到最优解 ,有效提高测量精度 ,减少建模所用波长数。本文将该方法应用于无创伤人体血糖浓度光学检测的基础研究中 ,验证实验所用样品为 :①葡萄糖水溶液 ;②包含牛血红蛋白和白蛋白的葡萄糖水溶液 ;③人血中的血浆 (含葡萄糖 )。结果表明 :建模的波长个数可分别减少 88%、86 %、85 % ;预测标准偏差 (RMSEP)分别减少 5 6 %、6 4 %、6 3%。这对无创伤人体血糖浓度光学检测理论的进一步研究具有指导意义
【Abstract】 Genetic algorithms is an effective method in wavelength selection applied in building multivariate calibration model based on partial least squares regression. If genetic algorithm is run repeatedly as a block, the optimal solution is obtained faster, the numbers of wavelengths used to build calibration model is further reduced, the prediction precision is further improved. This method was applied to fundamental study of Non-Invasive of measurement of human blood glucose concentration with spectroscopy. The experiments tested in this method are ① glucose in aqueous matrix, ② glucose in aqueous matrix containing bovine serum albumin and heucoglobin and ③ human serum containing glucose. The result shows that the numbers of wavelengths for building the models can reduce by 88%, 86% and 85% respectively, while the root mean square error of prediction reduces by 56%, 64% and 63% respectively. It is instructive for the further study of the theory of non-Invasive measurement of human blood glucose with spectroscopy.
【Key words】 Near infrared spectroscopy; non-invasive; human blood glucose; genetic algorithms; wavelength selection; partial least squares;
- 【文献出处】 分析化学 ,Chinese Journal of Analytieal Chemistry , 编辑部邮箱 ,2002年07期
- 【分类号】R311
- 【被引频次】49
- 【下载频次】422