节点文献
利用背景知识提高web语音浏览中的识别精度的方法
Improve the Accuracy of Recognition in Web Speech Browsing Using Context Knowledge
【摘要】 语音识别的精度不够高一直是阻碍语音技术得以广泛应用的瓶颈,在具体的应用中充分利用背景知识是解决此问题的一种有效方法.在web语音浏览中,用户的语音输入为某个有限集的元素之一,本文利用这个特点,首先定义了一种文本字符串之间的相似度,利用相似度对识别引擎的识别结果进行后处理,进而给出更准确的识别结果.实验结果表明,采用这种方法,语音识别的正确率能够达到95%以上,为真正实现语音上网提供了有力支持.
【Abstract】 The accuracy of speech recognition is still a bottleneck to baffle the application of speech technology.The accuracy of recognition may be improved greatly by using context knowledge efficiently.In web speech browsing,user’s speech input is usually one element of a finite set. Based on these observations,this paper first defines a kind of similarity between two Chinese text strings, then processes the recognition results of engine to acquire more accurate results. Experiments show that our approach is mostly efficient:the accuracy is improved from less than 60% to more than 95% .
【Key words】 web speech browsing; similarity; speech recognition and understanding;
- 【文献出处】 电子学报 ,Acta Electronica Sinica , 编辑部邮箱 ,2002年12期
- 【分类号】TN912.3
- 【被引频次】11
- 【下载频次】60