节点文献

基于概率神经网络的悬索桥损伤定位研究

Study of Damage Localization Based-Probabilistic Neural Network for Suspension Bridge

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 姜绍飞刘奎浩廖云贾连光

【Author】 JIANG Shao fei 1,4 , LIU Kui hao 2, LIAO Yun 3, JIA Lian guang 4 (1.?School of Resources & Civil Engineering, Northeastern University, Shenyang 110004, China;?2.?Liaoyang Construction Management Department, Liaoyang 111000,China;?3.?Shenyang Na

【机构】 东北大学资源与土木工程学院辽阳市建筑施工企业管理处沈阳市南湖科技开发区人事局沈阳建筑工程学院土木系 辽宁沈阳110004 沈阳建筑工程学院土木系辽宁沈阳110015辽宁辽阳111000辽宁沈阳110006辽宁沈阳110015

【摘要】 概率神经网络 (下称PNN)以贝叶斯概率方法描述测量数据 ,因而PNN可以在有噪声情况下进行结构损伤检测·提出了运用传统PNN和自适应PNN进行结构损伤检测的方法与基本原理 ,并分别用两种PNN模型进行了悬索桥的损伤定位研究 ,还讨论了测量噪声对识别精度(IA)的影响·研究发现 ,运用自适应PNN进行损伤定位效果极大地优于传统PNN ,且随着噪声程度的增大 ,IA减少

【Abstract】 The methods and principles of a traditional probabilistic neural network (PNN) and an adaptive PNN model were given respectively. The damage localization for suspension bridge was studied using the traditional and adaptive PNN, and the effect of noise level on identification accuracy (IA) was discussed. The IA for damage localization by using the adaptive PNN is better than that by using the traditional PNN. Furthmore, the IA values decrease as the noise level increse.

【基金】 建设部科技攻关项目 ;香港RGC项目
  • 【文献出处】 东北大学学报 ,JOURNAL OF NORTHEASTERN UNIVERSITY , 编辑部邮箱 ,2002年05期
  • 【分类号】U448
  • 【被引频次】46
  • 【下载频次】323
节点文献中: 

本文链接的文献网络图示:

本文的引文网络