节点文献
球壳结构馈通增长的瑞利-泰勒不稳定性
Rayleigh-Taylor Instability of Feedthrough Growth in a Spherical Shell Geometry
【摘要】 利用小扰动分析法 ,导出不可压缩球壳结构的馈通增长方程 ,数值模拟了高压气体驱动外表面有初始扰动的明胶球壳的瑞利 泰勒不稳定性模型。计算结果表明 :对于低波数扰动 ,外界面比较稳定 ,内表面的馈通增长较快 ,具有比较明显的三个演化阶段和波形反转现象。高波数扰动的增长恰好与低波数相反。球壳会聚结构比柱壳会聚结构的界面稳定性要好些
【Abstract】 Feedthrough perturbation growth equations in an incompressible spherical shell geometry were derived by small amplitude perturbation alalysis,and RT instability models on transparent gelatin spherical shell with initial perturbation on the outer surface were numerically calculated . This shell was imploded with high pressure gases.The calculations show that in the low wave number band, the outer surface is stable, while the feedthrough growth on the inner surface is rapid, resulting in the observed phase inversion. The perturbation growth behavior in the high wave number band is opposite to that in the low wave number band. The interface stability of the spherical shell geometry is better than that of the cylinder
【Key words】 spherical shell; convergent geometry; Rayleigh Taylor instability; feedthrough growth; perturbation;
- 【文献出处】 爆炸与冲击 ,Explosion and Shock Waves , 编辑部邮箱 ,2002年04期
- 【分类号】O357
- 【下载频次】60