节点文献
滑动轴承材料摩擦因数预测的2种方法
Two Methods of Friction Coefficient prediction of sliding bearing materials
【摘要】 在对多元非线性回归模型和BP网络模型分析的基础上,将幂函数曲线回归模型和Baysiane规则化BP网络对滑动轴承合金材料的摩擦因数进行预测比较,分析了2种方法的预测效果不同的原因,并针对滑动轴承材料摩擦因数预测给出了以全样本进行训练的Baysiane规则化BP网络的结构。
【Abstract】 Based on the analysis of multi-element non-linear regression model and BP network model, the friction coefficient of sliding bearing materials was predicted by the power-law curve regression model and Baysiane regularized BP network. The reasons of their different results were analysed as well. The BP network structure trained by full-sample was proposed.
【关键词】 多元非线性回归分析;
BP网络;
滑动轴承材料;
摩擦因数;
小样本;
【Key words】 multi-element non-linear regression analysis; BP network; sliding bearing materials; friction coefficient;
【Key words】 multi-element non-linear regression analysis; BP network; sliding bearing materials; friction coefficient;
- 【文献出处】 中国表面工程 ,China Surface Engineering , 编辑部邮箱 ,2002年03期
- 【分类号】TB115
- 【被引频次】2
- 【下载频次】120