节点文献

基于人工神经网络的变压器绝缘模型放电模式识别的研究

ANN BASED DISCHARGE PATTERN RECOGNITION OF INSULATION MODELS OF ELECTRICAL TRANSFORMERS

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 姜磊朱德恒李福祺谈克雄覃刚力金显贺王昌长T.C.Cheng

【Author】 JIANG Lei 1, ZHU De heng 1, LI Fu qi 1, TAN Ke xiong 1, QIN Gang li 1, JIN Xian he 2, WANG Chang chang 2, T.C.Cheng 2 (1.Tsinghua University,Beijing 100084, China; 2.University of Southern California,Los Angeles CA900089, U.S.A.)

【机构】 清华大学电机工程系!北京100084南加州大学!洛杉矶CA900089

【摘要】 分析了变压器绝缘的主要放电形式 ,设计了模拟变压器放电的 7种试验模型和 3种模拟空气中放电干扰的模型 ,进行了不同情况下模型的放电试验。使用数字化测量装置 ,取得了各种模型放电的放电量 相位信息。采用三维谱图提取放电指纹特征 ,并用人工神经网络ANN来识别不同的放电类型。研究结果表明 ,人工神经网络对油纸变压器绝缘放电有足够的识别能力。

【Abstract】 The main discharge types in insulation of electrical transformers were analysed, 7 kinds of experimental models simulating discharges in electrical transformers and 3 kinds of models simulating interfering discharges in air were designed and model experiments under some circumstances were performed. Using digital measuring device, the quantity phase information of discharge pulse current of models were obtained. The feature of discharge was extracted using the 3D pattern chart and the artificial neural networks was used to recognize the discharge models. The investigation shows that ANN has enough ability to recognize different types of discharge of oil paper insulation in transformers.

【基金】 国家自然科学基金资助项目! (5 96 372 0 0 )。
  • 【文献出处】 中国电机工程学报 ,Proceedings of the Csee , 编辑部邮箱 ,2001年01期
  • 【分类号】TM835.4
  • 【被引频次】81
  • 【下载频次】498
节点文献中: 

本文链接的文献网络图示:

本文的引文网络