节点文献
基于Hopfield神经网络的线性系统参数辨识方案及在鼠笼式电机传动系统参数辨识中的应用研究
HOPFIELD NEURAL NETWORK BASED LINEAR SYSTEM PARAMETERS’ IDENTIFICATION SCHEME AND ITS APPLICATION IN ASYNCHRONOUS MOTOR DRIVE SYSTEM IDENTIFICATION
【摘要】 将基于Hopfield神经网络的线性系统参数辨识方案[1,2 ] 作了扩展 ,得出了在辨识神经网络输入为经传感器检测延迟的系统状态变量的情况下 ,其辨识输出趋于正确的充分条件。通过在鼠笼式电机传动系统参数辨识中应用的仿真结果 ,验证了该辨识方案的正确性。
【Abstract】 In this paper, the Hopfield Neural Network (HNN) based linear system parameters’identification scheme is extended, and the sufficient condition for correct HNN identification is derived under the assumption that HNN inputs are the detected system state variable signal delayed by sensors. The validity of the derived identify scheme is proved by the simulation results of HNN based asynchronous motor drive system parameters’ identification in consider of sensors’ characteristics.
【关键词】 Hopfield神经网络;
参数辨识;
鼠笼式电机传动系统;
【Key words】 HNN(hopfield neural network); parameters’ identification; asynchronous motor drive syste?;
【Key words】 HNN(hopfield neural network); parameters’ identification; asynchronous motor drive syste?;
- 【文献出处】 中国电机工程学报 ,Proceedings of the Csee , 编辑部邮箱 ,2001年01期
- 【分类号】TP18
- 【被引频次】43
- 【下载频次】444