节点文献
动力学方程的积分型直接积分法
Direct Integration Methods With Integral Model for Dynamic Systems
【摘要】 提出了一个求解动力学问题的新方法 (DIM_IM) · 将动力学方程化成积分方程的形式 ,借助于该方程构造出了具有显式预测_校正的单步、自起动和四阶精度的积分型直接积分算法· 理论分析和算例指出 ,这一方法较中心差分法、Houbolt法、Newmark法和Wilson_θ法都有较高的精度· 本方法适用于强非线性 ,非保守系统·
【Abstract】 A new approach which is a direct integration method with integral model (DIM_IM) to solve dynamic governing equations is presented. The governing equations are integrated into the integral equations. An algorithm with explicit and predict_correct and self_starting and four order accuracy to integrate the integral equations is given. Theoretical analysis and numerical examples show that DIM_IM discribed in this paper suitable for strong non_linear and non_conservative system have higher accuracy than central difference,Houbolt,Newmark and Wilson_Theta methods.
【Key words】 numerical integration; step_by_step integration; non_linear; integral equation;
- 【文献出处】 应用数学和力学 ,Applied Mathematics and Mechanics , 编辑部邮箱 ,2001年02期
- 【分类号】O302
- 【被引频次】35
- 【下载频次】472