节点文献

软岩巷道支护方式优化的神经网络模型

A model for optimization of support patterns of soft rock roadway based on neural network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 朱川曲缪协兴谢东海

【Author】 ZHU Chuan-qu~1,MIAO Xie-xing~2 ,XIE Dong-hai~1 (1.Department of Resource Engineering, Xiangtan Polytechnic University , Xiangtan 411201,China;2.College of Science, China University of Mining and Te chnology, Xuzhou 221008,China)

【机构】 湘潭工学院资源工程系中国矿业大学理学院湘潭工学院资源工程系 湖南湘潭411201江苏徐州221008湖南湘潭411201

【摘要】 根据软岩的力学及物理性质 ,分析了软岩巷道稳定性的影响因素 ,在此基础上应用神经网络理论建立了软岩巷道支护方式优化及巷道变形预测模型。模型在梅田矿务局的应用表明 :它能合理选择软岩巷道的支护方式 ,比较准确地预测巷道两帮和顶底板移近量 ;采用改进型BP算法 ,增加了网络的学习速度 ,加快了网络的收敛 ,提高了模型的精度。

【Abstract】 On the basis of analysis of the factors influenci ng the stability of s oft rock roadway with different mechanical and physical features,a model to optimizing the support patterns of soft rock roadway and to pre dict its deformation is established by applying the theory of neural netwo rk. Its application in Meitian mining district shows that the model can select r ationally the support patterns of soft rock roadway and forecast accurately the deformation of sides and roof and floor of roadway, and that th e learning speed of network and the precision of model are enhanced with the app lication of reformatory BP algorithm.

【基金】 广东省科研资助项目 (961 30 )
  • 【文献出处】 岩土工程学报 ,Chinese Jounal of Geotechnical Engineering , 编辑部邮箱 ,2001年06期
  • 【分类号】TD353
  • 【被引频次】14
  • 【下载频次】308
节点文献中: 

本文链接的文献网络图示:

本文的引文网络