节点文献

神经网络遗传算法在粉体流量测量的应用

Neural Network Flowrate Measurement Based On Genetic Algorithms and Its Application to Powders

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 夏靖波邹铁鹏陆增喜王师

【Author】 Xia Jingbo Zou Tiepeng Lu Zengxi Wang Shi (School of Information Science & Engineer,Northeastern Univ.,Shenyang 110006,China)

【机构】 东北大学信息科学与工程学院!沈阳110006

【摘要】 利用浓度和速度电容式传感器分别测量粉体的浓度和速度 ,结合阀门开度、喷吹罐压力、温度等参数构造神经网络粉体流量测量模型 ,考虑 BP算法训练神经网络测量模型时收敛速度慢、动态特性不够理想等不足 ,用遗传算法来优化神经网络测量模型的参数 ,以提高测量系统的精度。在现场与电子秤比对 ,最大满量程误差小于 4.2 %。具有工程应用价值

【Abstract】 Capacitance sensors are used to measure volumetric concentration and velocity of powders, combined with pressure of puffing tank, valve on off, temperature parameters, a kind of neural network (NN) flowrate measurement model based on genetic Algorithms (GA) is presented. In order to overcome the defects such as slow convergent speed and unsatisfied dynamic characteristic when backpropagation (BP) is used to train the neural network measurement model, the method using GA to train parameters of NN is proposed to improve the performance of measurement model. Spot experiments show this method can reduce the errors of measurement. The whole accuracy is less than 4 2% according to the electronic-weighing device in work site. It has great engineering application value.

【基金】 辽宁省科委国际合作项目资助
  • 【文献出处】 仪器仪表学报 ,Chinese Journal of Scientific Instrument , 编辑部邮箱 ,2001年03期
  • 【分类号】TP183
  • 【被引频次】2
  • 【下载频次】95
节点文献中: 

本文链接的文献网络图示:

本文的引文网络