节点文献

非线性系统辨识的一种泛函网络方法

Functional Network Method for the Identification of Nonlinear Systems

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李春光廖晓峰何松柏虞厥邦

【Author】 LI Chun-guang 1, LIAO Xiao-feng 1,2 , HE Song-bai 3, YU Jue-bang 1(1.Department of Optoelectronics Technology, UESTC, Sichuan Chengdu 610054; 2.Institute of Computer Science, Chongqing University, Sichuan Chongqing 400044; 3.Microwave Center, UEST

【机构】 电子科技大学光电子技术系,电子科技大学光电子技术系,电子科技大学微波中心,电子科技大学光电子技术系 四川成都610054,四川成都610054重庆大学计算机学院,四川重庆400044,四川成都610054,四川成都610054

【摘要】 泛函网络是最近提出的一种对神经网络的有效推广。与神经网络不同 ,它处理的是一般的泛函模型 ,而不仅仅是Sigmoidal函数 ,并且在各个处理单元之间没有权值。提出了一种基于泛函网络的非线性系统的辨识方法 ,而网络参数利用梯度下降方法来进行学习。计算机仿真结果表明 ,这种辨识方法具有较快的收敛速度和良好的性能。

【Abstract】 Functional network is a recently introduced extension of neural networks. Unlike neural networks, it deals with general functional models instead of sigmoid-like ones. And in these networks there are no weights associated with the links connecting neurons. In this paper, we propose a functional network method for the identification of nonlinear systems. And the learning of parameters of the functional networks is carried out by the gradient descent algorithm. The simulation results demonstrate that the identification method presented in the paper has rapid convergence speed and powerful performance.

【关键词】 网络非线性系统系统识别
【Key words】 NetworksNonlinear systemSystem identification
  • 【文献出处】 系统工程与电子技术 ,Systems Engineering and Electronics , 编辑部邮箱 ,2001年11期
  • 【分类号】TP183
  • 【被引频次】28
  • 【下载频次】223
节点文献中: 

本文链接的文献网络图示:

本文的引文网络