节点文献

求解作业排序问题的通用混合遗传算法研究

Study on the General Hybrid Genetic Algorithm for Job Shop Scheduling

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 周泓姬彬

【Author】 ZHOU Hong, Ji Bin(School of Economics and Management, Beijing University of Aeronautics and Astronautics, Beijing 100083, China)

【机构】 北京航空航天大学经济管理学院北京航空航天大学经济管理学院 北京100083北京100083

【摘要】 车间作业排序理论是生产管理与组合优化领域的重要研究方向 ,由于其固有的计算复杂性( NP-Hard) ,一般无法利用经典方法求出最优解。本文针对一般作业排序问题 ,将遗传算法与启发式方法相结合 ,建立了一种混合算法框架 ,利用遗传算法改进启发式方法的求解性能 ,同时利用启发式方法引导遗传搜索过程 ,以提高其搜索效率。通过对完工时间与平均延误时间等不同优化目标的计算分析与比较表明 ,该方法对不同类型的排序问题均具有相当满意的求解效果

【Abstract】 Job shop scheduling is an important subject in the fields of production management and combinatorial optimization. It is usually hard to achieve the optimal solution with classical methods due to its high computational complexity (NP-Hard). A hybrid algorithm framework is proposed for general job shop scheduling problem in this paper, in which genetic algorithm (GA) is integrated with various heuristic methods. With this algorithm framework, the heuristics can be greatly improved by GA, while the searching efficiency of GA can be increased as well under the guidance of the heuristic rules. Finally, comprehensive numerical experiments have been made for optimizing makespan and mean tardiness, which show that satisfied solutions can be achieved for various scheduling problems with the hybrid algorithm.

【关键词】 作业排序遗传算法启发式
【Key words】 schedulinggenetic algorithmheuristics
【基金】 国家自然科学基金 ( 79970 0 5 4 );航空基础科学基金 ( 99J5 1 0 6 8)
  • 【文献出处】 系统工程理论与实践 ,Systems Engineering-theory & Practice , 编辑部邮箱 ,2001年12期
  • 【分类号】O223
  • 【被引频次】12
  • 【下载频次】225
节点文献中: 

本文链接的文献网络图示:

本文的引文网络