节点文献
复杂大系统建模的模糊神经网络方法
Modeling of Complex Large-Scale System Using Fuzzy Neural Networks
【摘要】 提出了一种新的复杂大系统建模方法。采用模糊神经网络对复杂大系统对象中的结构不确定性因素进行建模,并利用同步扰动随机近似算法对模型参数进行在线调整。将该方法应用于直升机旋翼自转着陆过程的仿真建模中,给出了全量模型和模型调整过程。仿真结果表明,该方法是切实可行的。
【Abstract】 A new modeling method for complex large-scale system (CLSS) is proposed. Uncertainties in the mathematical structure of a CLSS are modeled using fuzzy neural networks (FNN) and then its unknown parameters are tuned using a simultaneous perturbation stochastic approximation (SPSA) algorithm. As a result of the method, the simulation model of the landing process of a helicopter with rotator self-rotating is built. It is shown that the proposed method is available and applicable.
【关键词】 复杂大系统;
建模;
模糊神经网络;
同步扰动随机近似;
直升机;
【Key words】 complex large-scale system; modeling; fuzzy neural networks; simultaneous perturbation stochastic approxi- mation; helicopter;
【Key words】 complex large-scale system; modeling; fuzzy neural networks; simultaneous perturbation stochastic approxi- mation; helicopter;
【基金】 国家自然科学基金资助!(69874007)
- 【文献出处】 系统仿真学报 ,Acta Simulata Systematica Sinica , 编辑部邮箱 ,2001年03期
- 【分类号】TP183
- 【被引频次】11
- 【下载频次】253