节点文献
关于自内射环的类
ON A CLASS OF INJECTIV RINGS
【摘要】 总假定 R为含幺有限交换环 ,τ为正整数 .本文证明了 R与其一种有限单扩张同时具有自内射性 ,从而给出“R上任一延迟τ步弱可逆线性有限自动机都有线性延迟τ步弱逆的充要条件是 R为自内射环”的一个新证明 .
【Abstract】 Let R be a finite commutative ring with identity, τ be a positive integer. We prove in this paper that R and an finite simple extension of R have self-injectivity simultaneously, and based on this,give a new proof for the result that every weakly invertible linear finite automaton over R with delay τ has a linear weak inverse with delay τ if and only if R is a self-injective ring.
【关键词】 自内射环;
线性有限自动机;
延迟τ步弱可逆性;
延迟τ步弱逆;
【Key words】 self-injective ring; linear finite automaton; weak invertibility with delay τ; linear weak inverse with delay τ.;
【Key words】 self-injective ring; linear finite automaton; weak invertibility with delay τ; linear weak inverse with delay τ.;
【基金】 国家自然科学基金!资助项目 (697730 1 5)
- 【文献出处】 数学杂志 ,Journal of Mathematics , 编辑部邮箱 ,2001年02期
- 【分类号】O153
- 【被引频次】1
- 【下载频次】38