节点文献
光滑映射芽的开折的分级稳定性
Graded Stability of Unfoldings of Smooth Map Germs
【摘要】 光滑映射芽各种稳定性的讨论,一直是奇点理论的一个重要部分. Thom R.[1]在创立突变论时,提出了映射芽的,r-开折的稳定性理论.Wassermann G.[2]将之发展为开折的(r,s)稳定理论.本文将他们的结论发展为(r1,r2,…,rd)稳定性,在任意的分级情况下,得到强稳定性、弱稳定性及无穷小稳定性的等价性,并得到了一些基本结果.
【Abstract】 The discussion of various stabilities of smooth map-germs is an important part of singularity theory. While Thorn R. [1] established catastrophe theory, he gave a theory of stability of r-unfoldings of map germs. Wassermann G.[2] developed a theory of (r, s)-stability of unfoldings. In this paper we generalize them to (r1 ,... ,rd)-stability. For any Integer d, we prove equivalence of strong-, weak- and infinitesimal stabilities among other basic results.
【基金】 国家自然科学基金资助项目(19871074;10071087)
- 【文献出处】 数学学报 ,Acta Mathematica Sinica , 编辑部邮箱 ,2001年04期
- 【分类号】O192
- 【被引频次】13
- 【下载频次】46