节点文献
一类带有时滞的偏微分方程的振动性
Oscillation of a Class of Partial Differential Equations with Deviating Arguments
【摘要】 研究中立型时滞微分方程 2 t2 [u(x ,t) +p(t)u(x ,t -τ) ] =a(t)△u(x ,t) -q(t)f(u(x ,σ(t) ) ,(x ,t) ∈Ω×R+≡G (1)其中 ,R+=[0 ,+∞ ] ,Ω是具有逐段光滑边界的有界区域 .建立了方程 (1)的一切解均振动的新的充分条件 ,推广了文 [1]的结果
【Abstract】 In this paper, we study the partial differential equations with deviating arguments of neutral type of the form 2t 2[u(x,t)+p(t)u(x,t-τ)]=a(t)△u(x,t)-q(t)f(u(x,σ(t))),(x,t)∈Ω×R +≡G(1) Where Ω is a bounded domain with a piecewise smooth boundry, and R +=[O,+∞). New sufficient conditions for oscillations of all solutions of equation (1) are obtained, which generalized the conclusions of paper[1].
- 【文献出处】 数学研究 ,Journal of Mathematical Study , 编辑部邮箱 ,2001年01期
- 【分类号】O175
- 【被引频次】4
- 【下载频次】28