节点文献

一种改进的局部本质维数LID检测混沌方法

Detecting Chaos Using Improved Local Intrinsic Dimension

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 朱晓锦孙庆庆翟羽建

【Author】 Zhu Xiaojin 1) Sun Qingqing 2) Zhai Yujian 1) 1) Department of Instrument Science and Engineering,Southeast University Nanjing 210096,P.R.China 2) Department of Radio Engineering,Southeast University Nanjing 210096,P.R.C

【机构】 东南大学仪器科学与工程系东南大学无线电工程系东南大学仪器科学与工程系 南京210096南京210096

【摘要】 介绍基于确定吸收子维数上界检测混沌的 L ID算法 ,与关联数检测混沌算法比较该算法具有两个优点 :可以区分出分形噪声和混沌 ;可以在较低信噪比的情况下进行有效的检测。由于普遍利用基于 SVD分解的 L ID算法在有噪声的情况下阈值很难确定 ,本文分析了 SVD分解计算 L ID缺陷的原因 ,并在此基础上提出了一种基于局部 Neymark分解计算 L ID检测混沌的算法 ,仿真表明取得了很好的结果

【Abstract】 The application of improved local intrinsic dimension within the context of chaotic time series analysis is presented. After a brief review of this popular method used in nonlinear analysis, we show how the improved version may lead to some significant improvement. First, compared with the GP algorithm, it can distinguish low dimensional chaos from fractal noises, linear stochastic processes and high dimensional chaos. Secondly, since the detection of using the basic local intrinsic dimensional algorithm may lead suspicious result in a short and noisy time series, the widespread usefulness of the method is limited. When applying the algorithm, we use the local Neymark decomposition instead of the local singular value decomposition which is the most important part in the local intrinsic dimension algorithm. Simulated results indicate that the proposed algorithm works better than the basic local intrinsic dimension algorithm in short and noisy chaotic time series.

  • 【文献出处】 数据采集与处理 ,Journal of Data Acquisition & Processing , 编辑部邮箱 ,2001年02期
  • 【分类号】TN911.4
  • 【被引频次】1
  • 【下载频次】42
节点文献中: 

本文链接的文献网络图示:

本文的引文网络