节点文献

Rough有限格的蕴涵规则挖掘

Restricted Rough Lattice-Based Implication Rules Discovery

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 赵奕邢平平施鹏飞熊范纶

【Author】 ZHAO Yi 1, XING Ping ping 1, SHI Peng fei 1, XIONG Fan lun 2 (1.Inst. of Image Processing & Pattern Recognition, Shanghai Jiaotong Univ., Shanghai 200030, China; 2.Hefei Inst. of Intelligent Machines, Chinese Academy of Science, Hefei 230031)

【机构】 上海交通大学图像处理与模式识别研究所!上海200030中国科学院合肥智能机械研究所!合肥230031

【摘要】 提出了一种基于 Rough有限概念格的规则发现方法 (RRLIRD) ,以揭示数据集中的蕴涵规则 .首先引入有限概念格的简化表示形式 ,由用户选择数据集中感兴趣属性集创建概念格结构 ,提高用户的交互性和挖掘的效率 ;然后运用有限概念格与 Rough集理论相结合形成 Rough有限概念格 ,蕴涵规则则由其特有的上、下近似运算得到 ,不需计算繁琐的频繁项目集 .算法运用大型超市的交易流水数据进行仿真实验 .结果表明 ,执行时间比经典的 Apriori算法大大降低 .该算法也适用于证券行情分析和农业数据库中的病虫害分析等 .

【Abstract】 An efficient algorithm was found to discover the implication rules in a data set. As an important data mining technique, the implication rules can help to explore the dependencies among values of attributes of a database. The algorithm first extends the concept lattice theory by building the simplified lattice structure according to the data set with the resticted attributes to improve human interaction and mining efficiency. The constrained concept lattice, together with the rough set theory, is then incorporated into the method to implement a new restricted rough lattice based implication rules discovery (RRLIRD) approach to interactively acquire the rules with the specific rough upper and lower approximation. The algorithm is different from the classical rule extraction methods without computing the frequent itemsets. For the application to the transaction data set of large scale supermarkets, a simulation was implemented to demonstrate that the approach can reduce the computational time greatly comparing with that of the Apriori algorithm. The algorithm can also be extended to other areas such as stock analysis and agricultural application.

【关键词】 数据挖掘蕴涵规则概念格Rough集
【Key words】 data miningimplication rulesconcept latticeRough set
【基金】 国家自然科学基金!资助项目 (6 9835 0 10 )
  • 【文献出处】 上海交通大学学报 ,Journal of Shanghai Jiaotong University , 编辑部邮箱 ,2001年02期
  • 【分类号】TP311.13
  • 【被引频次】24
  • 【下载频次】107
节点文献中: 

本文链接的文献网络图示:

本文的引文网络