节点文献
一种可解的量子群统计模型
A Solvable Quantum Group Statistical Model
【摘要】 研究了一种可解的SLq(2 )统计模型 .如果对SL(2 )李代数的对角元素进行q量子化 ,同时采用量子迹重新定义热力学平均值 ,那么只能推出零能隙的序参量方程 ;如果对SL(2 )李代数的非对角元素进行q量子化 ,并且保留经典迹的运算 ,那么可以得到超导或超流中一种半经典的q变形序参量方程 .还讨论了这些统计模型的物理应用
【Abstract】 A solvable quantum group statistical model is studied in this paper. Making a q-quantization for the diagonal element of SL(2) Lie algebra and using the q-trace to redefine the thermodynamics average, we can derive the zero-energy equation for order parameter. If wemake a q-quantization for the off-diagonal element of SL(2) Lie algebra and still retain classical trace operator, it is possible to obtain a semi-classical q-deformed equation for order parameter in the superconductivity or super-fluid model. The physical application of these statistical models are alsodiscussed.
【Key words】 Quantum groups; SL q(2) deformedalgebra; Superconductivity and super-fulid;
- 【文献出处】 四川师范大学学报(自然科学版) ,Journal of Sichuan Normal University(Natural Science) , 编辑部邮箱 ,2001年06期
- 【分类号】O414.2
- 【被引频次】1
- 【下载频次】41