节点文献

神经网络方法在综放工作面的应用

Application of neural network method in fully mechanized sub-level caving face

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 朱川曲缪协兴肖红飞

【Author】 ZHU Chuan qu 1, MIAO Xie xing 2, XIAO Hong fei 1(1 Department of Resource Engineering, Xiangtan Polytechnic University, Xiangtan 411201, China; 2 College of Science, China University of Mining and Technology, Xuzhou 221008, China)

【机构】 湘潭工学院资源工程系!湖南湘潭411201中国矿业大学理学院!江苏徐州221008

【摘要】 综放工作面为复杂的非线性系统 ,其设备与放煤工艺参数的选择和技术经济指标的预测 ,是复杂的非线性问题 ,用传统的数学方法难于解决 .应用神经网络方法建立了综放工作面产量、工效及采出率的预测模型 ,并实现了采煤机、液压支架选型和放煤方式、放煤步距的优化 .实际应用结果表明 ,模型的可靠性及精度高 ,有较大的实用价值

【Abstract】 Fully mechanized sub level caving face is a complicated non linear system, and the selection of equipment and technological parameters for coal drawing and the forecast of technical economic indexes of the face are complicated non linear problems which are difficult to solve with traditional mathematical method. A neural network model is established to predict face production, efficiency and recovery rate, to select shearer and powered supports and to optimize coal drawing method and interval. The results of actual application indicate that the model is reliable and precise and has larger practical value.

【基金】 国家自然科学基金重点资助项目 !(5 973 4 0 90 )
  • 【文献出处】 煤炭学报 ,Journal of China Coal Society , 编辑部邮箱 ,2001年03期
  • 【分类号】TD822.1;TP183
  • 【被引频次】20
  • 【下载频次】175
节点文献中: 

本文链接的文献网络图示:

本文的引文网络