节点文献
推广的Gross-Pitaevskii理论中的涡旋问题(英文)
Vortex in Generalized Gross-Pitaevskii Theory
【摘要】 利用推广 Gross- Pitaevskii方程 ,分别研究了 (2 +1 )维时空和 3维空间的 Bose- Einstein凝聚体中涡旋的拓扑结构 .这一推广的方程能够被用于非均匀并且高度非线形的 Bose- Einstein凝聚系统 .利用Φ映射拓扑流理论 ,给出了基于序参数的涡旋速度场 ,以及该速度场的拓扑结构 .最后 ,仔细地探讨了这两种 Bose- Einstein系统中涡旋的各种分支条件 .
【Abstract】 We studied the topological structure of vortex in the Bose-Einstein condensation with a generalized Gross-Pitaevskii equation in (2+1)-dimensional space-time and 3-dimensional space, respectively. Such equation can be used in discussing Bose-Einstein condensates in heterogeneous and highly nonlinear systems. An explicit expression for the vortex velocity field as a function of the order parameter field is derived in terms of the Φ -mapping theory, and the topological structure of the velocity field is studied. At last, the branch conditions for generating, annihilating, crossing, splitting and merging of vortex in two kinds of Bose-Einstein systems are given.
【Key words】 Gross-Pitaevskii equation; topological current theory of Φ -mapping; bifurcation;
- 【文献出处】 原子核物理评论 ,Nuclear Physics Review , 编辑部邮箱 ,2001年04期
- 【分类号】O414.2
- 【被引频次】1
- 【下载频次】62