节点文献

基于最大互信息的人脑MR-PET图像配准方法

Method of Human Brain MR-PET Image Registration Using Maximal Mutual Information

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 杨虎马斌荣任海萍沈晋慧

【Author】 YANG Hu, MA Binrong, REN Haiping, SHEN Jinhui 1 Dept. of Biomedical Engineering, Capital University of Medical Sciences, Beijing\ 100054\ 2 Cancer Hospital, Chinese Academy of Medical Science Beijing, 100021

【机构】 首都医科大学生物医学工程系中国医学科学院肿瘤医院核医学科首都医科大学生物医学工程系 100054100054100021100054

【摘要】 利用最大互信息法进行多模医学图像配准近来成为了医学图像处理领域的热点。MR和PET图像配准对研究神经组织的结构功能关系和引导神经外科手术有着重要的指导意义。本文描述了一种基于互信息的人脑MR PET图像配准方法。我们将这种方法应用于图像的几何对准并给出了初步的评估结果。由于不需要对不同成像模式下的图像灰度间的关系作任何假设 ,最大互信息法是一种稳健性强 ,可广泛应用于基于体素的多模图像的配准方法

【Abstract】 There has recently been considerable interest in medical image processing community in the use of maximal mutual information for automatic registration of images from different modalities. Applyication of registration methods to MR and PET images is very important in neurology to study structure function relationships and to guide neurosurgery. In this paper is described an automated mutual information based method for human brain MR PET image registration. We have applied this method to the problem of geometric alignment of autoradiographs. Preliminary evaluation results are presented below based on our experiments. Because no conditions are required regarding the nature of the relation between image intensities of both modalities, Maximal mutual information based method is very robust and may be quite useful in multimodalities voxel based registration.

  • 【文献出处】 北京生物医学工程 ,Beijing Biomedical Engineering , 编辑部邮箱 ,2001年04期
  • 【分类号】R311
  • 【被引频次】25
  • 【下载频次】254
节点文献中: 

本文链接的文献网络图示:

本文的引文网络