节点文献
半导体漂移-扩散模型方程解的渐近性
Asymptotic Behavior of the Drift-diffusion Semiconductor Equations
【摘要】 研究半导体器件的漂移 -扩散模型方程解的渐近性 .设迁移率是常数 ,复合 -产生率为 Auger项 ,在这种情形下 ,证明动力系统有一个紧、连通、最大吸引子 ,它吸收在 L∞ 模下的有界集 .然后 ,证明解半群映射的可微性 ,并给出吸引子的 Hausdorff维数的上界估计
【Abstract】 The asymptotic behavior of the drift diffusion model for semiconductor devices is studied. It is assumed that the mobilities are constants and the generation recombination term is Auger model. In this case, it is shown that the dynamical system has a compact, connected, maximal attractor that attracts sets that are bounded in terms of the L ∞ norm. Then, the differentiability of the semigroup defined by the solution map is proved; and an upper bound for the Hausdorff dimension of the attractor is given.
【关键词】 半导体;
漂移-扩散模型;
Auger项;
吸引子;
Hausdorff维数;
【Key words】 semiconductor; drift diffusion model; Auger term; attractor; Hausdorff dimension;
【Key words】 semiconductor; drift diffusion model; Auger term; attractor; Hausdorff dimension;
【基金】 国家自然科学基金
- 【文献出处】 郑州大学学报(自然科学版) ,JOURNAL OF ZHENGZHUOU UNIVERSITY (NATURAL SCIENCE EDITION) , 编辑部邮箱 ,2000年03期
- 【分类号】O411
- 【被引频次】1
- 【下载频次】83