节点文献
耗散Schr dinger-Poisson方程组的Cauchy问题
Cauchy Problem of Schr dinger-Poisson Systems with Dissipation
【摘要】 考虑耗散 Schr dinger-Poisson方程组的 Cauchy问题 ,利用半群理论和先验估计方法 ,对吸引力情形 ,证明了该问题整体强解的存在惟一性
【Abstract】 The following Cauchy problem of the Schrodinger Poisson systems with dissipation is considered. The global existence and uniqueness of i Ψ mt =-12ΔΨ m +VΨ m + i H 1Ψ m , x∈R 3,t>0 Ψ m (x,0)=φ m(x), x∈R 3 -ΔV=εn, ε=±1 n(x,t)=∑∞m=1λ m|Ψ m (x,t)| 2the strong solutions for the problems are proved by using the theory of semigroup and the method of priori estimates.
【关键词】 耗散;
Schr dinger-Poisson方程组;
Wigner-Poisson方程;
Cauchy问题;
整体强解;
存在性;
惟一性;
【Key words】 dissipation; Schrodinger Poisson system; Wigner Poisson equation; Cauchy problem; global strong solutions; existence; uniqueness;
【Key words】 dissipation; Schrodinger Poisson system; Wigner Poisson equation; Cauchy problem; global strong solutions; existence; uniqueness;
【基金】 国家自然科学基金资助项目
- 【文献出处】 郑州大学学报(自然科学版) ,JOURNAL OF ZHENGZHUOU UNIVERSITY (NATURAL SCIENCE EDITION) , 编辑部邮箱 ,2000年01期
- 【分类号】O175.29
- 【下载频次】13