节点文献
延迟微分代数系统的隐式中点法稳定性判据
The Stability Criteria of Implicit Midpoint Rule for Delay Differential-Algebraic Systems
【摘要】 延迟微分代数系统广泛出现于各工程领域 .针对一类刚性延迟微分代数系统 ,给出了隐式中点法的整体与渐近稳定性判据 ,其判据基于系统的非经典李普希滋条件 .
【Abstract】 Delay Differential algebraic Systems (DDAEs) have been seen frequently in the circuit analysis, real time simulation of automatic control systems and the other engineering fields. When the classical Lipschitz constants of the systems are very large, these systems necessarily suffer stiffness. There are only few researches on the numerical solutions of DDAEs, mainly devoting to linear systems and non stiff problems. The criteria of global and asymptotic stability of midpointrule for a class of nonlinear stiff DDAEs with non classical Lipschitz condition are given.
【关键词】 隐式中点法;
延迟微分代数系统;
稳定性;
【Key words】 implicit midpoint rule; delay differential equation; stability;
【Key words】 implicit midpoint rule; delay differential equation; stability;
【基金】 国家自然科学基金!资助项目 (6 99740 18)
- 【文献出处】 华中科技大学学报 ,Journal of Huazhong University of Science and Technology , 编辑部邮箱 ,2000年12期
- 【分类号】O241.81
- 【被引频次】2
- 【下载频次】85