节点文献
驾驶适应性的神经模糊综合测评系统
A Fuzzy Neural Network Model of Judge Driver Proneness
【摘要】 将神经网络与模糊逻辑集成一驾驶适应性模糊神经综合测评系统。该系统含有一个Bp网 ,一个模糊推理机和一个知识库。以高速判断 ,跟踪 ,暗适应 ,选择反应 ,注意力 ,速视 ,动视力和深度知觉这 8个指标值为特征量构成学习样本 ,使用K 均值法对实验样本进行初始分类 ,形成标准学习样本 ,使用这些样本对所建系统进行训练和调试。利用经调试训练后的系统 ,依据所测驾驶员的心理、心理参数对驾驶员的驾驶适应性进行评价。试验表明 :其评价效果是令人满意的。
【Abstract】 A comprehensive evaluation expert system of driver proneness is established in this paper. The system inchudes a Bp network, a fuzzy inferring engine and a knowledge library. Eight index values (which are high speed judgement, speed tracing, dark adaptation, tracking, selective response, attention, kinesthetic vision and depth perception) are used as characteristic parameters to form the testing samples. Using k?means method cluster the testing samples beforehand, standard learning samples are formed and then are used to train and adjust the system. The experiment proves that the evaluation effect of driver proneness is satisfying when we use the trained system to evaluate the driver proneness with driver′s mental and physical parameter.
【Key words】 Driver proneness; Neural network; Fuzzy logic; Comprehensive judging;
- 【文献出处】 公路交通科技 ,Journal of Highway and Transportation Reseach andk Development , 编辑部邮箱 ,2000年06期
- 【分类号】U471.1
- 【被引频次】14
- 【下载频次】253