节点文献

用连续回归神经网络求解泛函极值问题

A CONTINUOUS TIME RECURRENT NEURAL NETWORK BASED METHOD TO SOLVE FUNCTIONAL MINIMIZATION PROBLEM

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘贺平张兰玲孙一康

【Author】 Liu Heping Zhang Lanling Sun Yikang (Department of Automation, University of Science and Technology Beijing, Beijing 100083)

【机构】 北京科技大学自动化系北京科技大学自动化系 北京 100083北京 100083北京 100083

【摘要】 针对信息科学和控制理论中经常涉及的一类泛函极值问题,提出基于连续回归神经网络的求解方法。推导了求解泛函的连续BPTT算法,进而对该算法进行改进,得出一种在线学习算法,为并行实现打下了基础。

【Abstract】 In this paper, the continuous time recurrent neural network is proposed to solve the functional minimization problem, which is often involved in estimation and control. At first, the continuous time BPTT algorithm corresponding to the problem is presented. Then,an on-line algorithm based on the amendments of the BPTT algorithm is discussed. This on-line algorithm paves the way for parallel realization.

  • 【分类号】TP183
  • 【被引频次】1
  • 【下载频次】171
节点文献中: 

本文链接的文献网络图示:

本文的引文网络