节点文献
用连续回归神经网络求解泛函极值问题
A CONTINUOUS TIME RECURRENT NEURAL NETWORK BASED METHOD TO SOLVE FUNCTIONAL MINIMIZATION PROBLEM
【摘要】 针对信息科学和控制理论中经常涉及的一类泛函极值问题,提出基于连续回归神经网络的求解方法。推导了求解泛函的连续BPTT算法,进而对该算法进行改进,得出一种在线学习算法,为并行实现打下了基础。
【Abstract】 In this paper, the continuous time recurrent neural network is proposed to solve the functional minimization problem, which is often involved in estimation and control. At first, the continuous time BPTT algorithm corresponding to the problem is presented. Then,an on-line algorithm based on the amendments of the BPTT algorithm is discussed. This on-line algorithm paves the way for parallel realization.
【关键词】 泛函极值;
连续回归神经网络;
BPTT算法;
在线学习算法;
【Key words】 Functional minimization; Continuous time recurrent neural network; BPTT algorithm; On-line learning algorithm;
【Key words】 Functional minimization; Continuous time recurrent neural network; BPTT algorithm; On-line learning algorithm;
- 【文献出处】 电子科学学刊 , 编辑部邮箱 ,2000年05期
- 【分类号】TP183
- 【被引频次】1
- 【下载频次】171