节点文献
噪声有源控制的人工神经网络方法
Active Noise Control Using an artificial Neural Network
【摘要】 讨论了有源噪声控制(ANC)问题,提出了一种基于人工神经网络的非线性噪声有源自适应控制方法,给出了一种基于误差梯度下降的学习算法,证明了闭环控制系统在Lyapunov意义下的稳定性。
【Abstract】 The active noise control(ANC) is studied. If the primary noise path were nonlinear,the control system based on adaptive filter technology would be invalid. An adaptive active nonlinear noise control approach using a neural network is derived. A learning algorithm based on the error gradient descent method is proposed. The stability of closed loop system is proved in the Lyapunov’s sense. A nonlinear simulation example is given to show that the adaptive active noise control method based on a neural network is very efficient to the noninear noise control.
【关键词】 有源噪声控制;
人工神经网络;
非线性系统;
【Key words】 Active noise control; artificial neural network; nonlinear system;
【Key words】 Active noise control; artificial neural network; nonlinear system;
【基金】 北京市教委资助科技项目!99KJ44
- 【文献出处】 电声技术 ,AUDIO ENGINEERING , 编辑部邮箱 ,2000年07期
- 【分类号】TP18
- 【被引频次】26
- 【下载频次】209