节点文献
基于遗传算法神经网络流量测量
Neural Network Flowrate Measurement Based On Genetic Algorithms
【摘要】 针对高炉煤粉喷吹系统 ,建立一种基于遗传算法的神经网络流量测量模型 ,考虑BP算法训练神经网络测量模型时收敛速度慢、动态特性不够理想等不足 ,用改进的遗传算法来优化神经网络测量模型的参数 ,以提高测量系统的精度·现场实验表明 ,最大满量程误差小于 3 .8%,具有工程应用价值·
【Abstract】 For pulverized coal injection systems of blast furnaces, a neural network (NN) flowrate measurement model based on Genetic Algorithms (GA) is presented. In order to overcome the disadvantages such as slow convergent speed and unsatisfied dynamic characteristic as backpropagation (BP) was used to train the neural network measurement model,the GA method was applied to optimize parameters of NN thus to improve the performance of the measurement model. Spot experiments show that the model can reduce the errors of measurement down to less than 3 8% ,which means the great engineering application worthiness.
【Key words】 neural network; genetic algorithms; flowrate measurement; pulverized coal injection;
- 【文献出处】 东北大学学报 ,JOURNAL OF NORTHEASTERN UNIVERSITY , 编辑部邮箱 ,2000年03期
- 【分类号】TH81
- 【被引频次】9
- 【下载频次】172