节点文献
转动系统相对论性动力学方程的代数结构与Poisson积分
Algebraic Structures and Poisson Integrals of Relativistic Dynamical Equations for Rotational Systems
【摘要】 研究转动相对论系统动力学方程的代数结构,得到了完整保守转动相对论系统与特殊非完整转动相对论系统动力学方程具有Lie 代数结构;一般完整转动相对论系统、一般非完整转动相对论系统动力学方程具有Lie 容许代数结构· 并给出转动相对论系统动力学方程的Poisson 积分
【Abstract】 The algebraic structures of the dynamical equations for the rotational relativistic systems are studied. It is found that the dynamical equations of holonomic conservative rotational relativistic systems and the special nonholonomic rotational relativistic systems have Lie’s algebraic structure, and the dynamical equations of the general holonomic rotational relativistic systems and the general nonholonomic rotational relativistic systems have Lie admitted algebraic structure. At last the Poisson integrals of the dynamical equations for the rotational relativistic systems are given.
【Key words】 rotational systems; relativity; analytic mechanics; equation of motion; algebraic structure; Poisson integral;
- 【文献出处】 应用数学和力学 ,APPLIED MATHEMATICS AND MECHANICS , 编辑部邮箱 ,1999年11期
- 【分类号】O412.1
- 【被引频次】14
- 【下载频次】57