节点文献
煤的工业分析至元素分析的BP神经网络预测模型
RELATIONSHIPBETWEEN ULTIMATEANALYSISOF ANY COAL ANDITSPROXIMATEANALYSISDATA
【摘要】 以大量煤质分析数据为基础,建立了利用煤工业分析数据( 包括水份、灰份、挥发份及热值) 计算元素分析数据的BP神经网络预测模型,并将该模型与现有经验公式进行了比较,结果表明神经网络模型有很好的推广能力。可以满足工业应用的要求
【Abstract】 There existsintrinsicrelation between the primary elements such as carbon , hydrogen ,oxygen and nitrogen and so on ,and the proximate analysis data including mois ture content,ash content,volatile content,fixed carbon and heatvalue ofcoal- However, thisrelationis much complicated and difficultto understandfully- Based on alarge quantity of coaldata ,a BPneuralnetwork modelis putforward inthis paperto predictthe ultimate analysisofa coalfrom its proximate analysis data- Comparison with the existing empirical modelsindicatesthat neuralnetwork techniqueis quite effectivein drawingtheintrinsic and intricate relationship betweenthe ultimate analysis ofa coaland its proximate analysis data-
【Key words】 proximate analysis; ultimate analysis; artificial neuralnetwork;
- 【文献出处】 燃料化学学报 ,JOURNAL OF FUEL CHEMISTRY AND TECHNOLOGY , 编辑部邮箱 ,1999年05期
- 【分类号】TQ533.2
- 【被引频次】55
- 【下载频次】794