节点文献

用神经网络方法进行大米留胚率自动检测的研究

Research on Detecting the Plumule Ratio of Rice Kernel Using a Neural Network Approach

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 黄星奕吴守一方如明

【Author】 Huang Xingyi Wu Shouyi Fang Ruming (Jiangsu University of Science and Technology,Zhenjiang 212013)

【机构】 江苏理工大学

【摘要】 留胚率是衡量胚芽米品质的主要技术指标。该文建立了一个双重结构神经网络分类器,用机器视觉获取胚芽米图像,从中提取米粒的物理特性作为网络分类器的输入进行训练,实现了留胚率的自动检测。测试结果表明该方法准确率较高并具有鲁棒性。

【Abstract】 Plumule ratio is of the most important criterion for evaluating the quality of plumule rice. A dual structure neural network classifier was developed which consisted of two parallel identifiers(one per type)followed by a comparing selector. Images of rice kernels were captured using a machine vision system. The identifiers were individually trained using physical attributes of rice kernel extracted from their images as the input. Then the classifier can be used to classify two types of rice kernel(kernel with or without plumule).And the plumule ratio of rice can be measured automatically. Tests showed that classification accuracy was high and the classifier was robust.

【关键词】 神经网络大米留胚率检测
【Key words】 neural networkriceplumule ratiodetection
【基金】 江苏省应用基础研究计划资助!(BJ95064)
  • 【文献出处】 农业工程学报 ,TRANSACTIONS OF THE CHINESE SOCIETY OF AGRICULTURAL ENGINEERING , 编辑部邮箱 ,1999年04期
  • 【分类号】S24
  • 【被引频次】29
  • 【下载频次】162
节点文献中: 

本文链接的文献网络图示:

本文的引文网络