节点文献
黎曼面上的温度对偶性与亏格数g=1和2的弦宇宙学解
Temperature Duality on Riemann Surface and Cosmological Solutions for Genus g=1 and 2
【摘要】 考察了一个在引力场gμv和dilaton场背景下的有限温度玻色弦模型,导出了高亏格黎曼面上能量动量张量满足的对偶关系式;同时,还在四维Robertson-Walker(R-W)度规下证明了弦气体物质作用量的温度对偶不变性,获得了亏格数g=1和2的弦宇宙学解,并研究了运动方程的温度变换性质.
【Abstract】 A Bosonic string model at finite temperature on the gravition g and thedilaton background field is examined. Moreover, the duality relation of energymomentum tensor on high genus Riemann surface is derived. At the same time, thetemperature duality invariance for the action of string gas matter is proved in 4-DRobertson-Walker metric, the string cosmological solutions and tomperature duality ofthe equations of motion for genus g=1 and 2 are also investigated.
【关键词】 黎曼面;
温度对偶性;
弦宇宙学解;
【Key words】 Riemann surface; temperature duality; string cosmological solutions;
【Key words】 Riemann surface; temperature duality; string cosmological solutions;
【基金】 国家教委博士点基金
- 【文献出处】 高能物理与核物理 ,HIGH ENERGH PHYSICS AND NUCLEAR PHYSICS , 编辑部邮箱 ,1999年07期
- 【分类号】O572
- 【被引频次】11
- 【下载频次】44