节点文献
相对论性非线性非完整力学系统的Birkhoff表示
Birkhoff’s Representation for Relativistic Nonlinear Nonholonomic Mechanical Systems
【摘要】 研究相对论性非线性非完整力学系统的 Birkhoff 表示.引入相对论性广义动能函数,采用凝固导数以及凝固偏导数,得到了相对论性非线性非完整系统凝固导数形式的 D’ Alembert_ Lagrange原理、 Routh 方程;运动方程表成显形式,进一步实行 Birkhoff 化,将 Birkhoff 动力学方程推广应用于相对论性非线性非完整力学系统;并给出应用实例
【Abstract】 Birkhoff’s representation for relativistic nonlinear nonholonomic mechanical systems is studied.The relativistic generalized kinetic energy function,“freezing_derivatives”and“freezing_parlial derivatives”is introduced.The “freezing_derivatives”form D’Alembert_Lagrange principle and Routh equations for relativistic nonlinear nonholonomic dynamical systems are obtained.The equations of motion are expressed as the explicit form,then which can be expressed in form of Birkhoff.The dynamical equations of Birkhoff are generalized and applied to the relativistic nonlinear nonholonomic dynamical systems.At last an illustrative example is given.
【Key words】 Relativity; Nonlinear nonholonomic system; Variation principle; Equation of motion; Freezing_derivative; Dynamics of Birkhoff system;
- 【文献出处】 江西科学 ,JIANGXI SCIENCE , 编辑部邮箱 ,1999年03期
- 【分类号】O316
- 【被引频次】5
- 【下载频次】33