节点文献
高炉参数学习用模糊神经网络专家系统
Neuro-Fuzzy Network Expert System for Parameter Learning of Blast Furnace
【摘要】 用模块化模糊神经网络模型进行参数学习专家系统的研究是根据不同的炉况类型及其相关变量将整个参数学习模型分解为几个结构相似的子模糊神经网络模型。其中,子神经网络模型能够模拟诊断推理过程,动态地进行特征数据的权重、模糊等级的界限值和规则可信度的调整。采用该方法对现场采集的数据进行实验,结果表明该方法具有较好的学习效果。
【Abstract】 When the parameter learning expert system was researched by modular neuro fuzzy network model, the whole model was decomposed into a few sub models of neuro fuzzy network with similar structure according to different abnormal statuses. The sub models can simulate the inference process of diagnosis system, and tune the weights, the membership functions of the feature data and the reliabilities of the rules. The results of the experiments using the data collected from a blast furnace show that the proposed method is feasible.
【关键词】 神经网络;
模糊逻辑;
专家系统;
参数学习;
【Key words】 neural network; fuzzy logic; expert system; parameter learning;
【Key words】 neural network; fuzzy logic; expert system; parameter learning;
【基金】 国家计委“九五”重点科技攻关项目
- 【文献出处】 钢铁研究学报 ,JOURNAL OF IRON AND STEEL RESEARCH , 编辑部邮箱 ,1999年05期
- 【分类号】TP182
- 【被引频次】11
- 【下载频次】93