节点文献
LGpd-度量及其收敛问题
LGpd-Metric Space and Its Convergence
【摘要】 以平面R2 上的距离d 为基础,结合水平λ的重要性函数g(λ),在Fuzzy 数空间E1 上建立了LGpd-度量D[pg],证明了(E1,D[pg])为度量空间的充分必要条件是g(λ)在[0,1]上几乎处处不为零。进而讨论了当d 是由R2 上的范数确定的距离时,(E1,D[pg])的基本性质及D[pg]的完备性问题。
【Abstract】 In this paper,by applying the distance of plane R 2 and level importance function g(λ),we establish the LG pd metric D [pg] on fuzzy number space E 1,and show that (E 1,D [pg] ) is a metric space if and only if g(λ)≠0 almost everywhere on [0,1].In addition,the basic properties and the completeness of D [pg] are discussed when the distance is determined by the norm of plane.
- 【文献出处】 河北科技大学学报 ,JOURNAL OF HEBEI UNIVERSITY OF SCIENCE AND TECHNOLOGY , 编辑部邮箱 ,1999年04期
- 【分类号】O159
- 【被引频次】1
- 【下载频次】7